
Abgabe Übungsblatt 7

Ben Zöttl 457736 Deni Ismailov 454935 Ahmed Assahub 442562

Dezember 2025

Aufgabe 7.1) Entwurfsmuster

a) Verfeinerungen mit Analysemustern
Die folgenden Verfeinerungen des Analysemodells werden unter Anwendung geeigneter Analysemuster durchge-
führt.

i) Quests: Individuelle Aufgaben oder komplexe Quests

• Muster: Composite (Kompositum)

• Begründung: Das Composite-Muster erlaubt es, hierarchische Strukturen abzubilden, indem es eine
uniforme Schnittstelle für Einzelobjekte (IndividuelleAufgabe) und Containerobjekte (KomplexeQuest)
bereitstellt. Dies ermöglicht die Zusammensetzung von Quests aus Sub-Quests.

• Anwendung: Die Klasse Quest wird zur abstrakten Komponente.

– IndividuelleAufgabe (Blatt): Erbt von Quest, enthält Aufgabenbeschreibung.

– KomplexeQuest (Container): Erbt von Quest, besitzt eine Assoziation zu einer Sammlung von Quest-
Komponenten (Sub-Quests).

ii) Abschluss-Status und Fortschritt der Quest pro Player-Charakter

• Muster: Association Class (Assoziationsklasse)

• Begründung: Die Informationen (Fortschritt, Status, Zeitpunkte) gehören nicht nur zur Quest oder
zum PlayerCharakter, sondern zur spezifischen Beziehung zwischen beiden. Eine Assoziationsklasse
ermöglicht die Kapselung dieser relationalen Attribute.

• Anwendung: Die Assoziation zwischen PlayerCharakter und Quest wird durch die Assoziationsklasse
QuestFortschritt qualifiziert.

– QuestFortschritt enthält Attribute wie String status, int fortschritt, Date startZeitpunkt,
Date endZeitpunkt.

iii) NPC als Verkäufer, Gegner oder keines

• Muster: Role-Muster (abgeleitet vom Strategy-Muster)

• Begründung: Da die Rollen optional sind, wechselbar und nicht exklusiv, ist das Role-Muster ideal, um
die flexiblen Verhaltensweisen (Verkäufer, Gegner) von der Hauptklasse NPC zu entkoppeln.

• Anwendung:

– Interface/Abstrakte Klasse NPCRolle wird definiert.

– Konkrete Klassen VerkäuferRolle und GegnerRolle implementieren NPCRolle.

– NPC erhält eine optionale Assoziation (0..1) zur NPCRolle.

1



iv) Unterscheidung zwischen Item-Exemplar und Item-Art

• Muster: Type-Object (Typobjekt)

• Begründung: Gemeinsame, statische Eigenschaften (name, beschreibung) werden in einer separaten
Typklasse (ItemArt) zusammengefasst. Die individuelle Klasse (Item) behält nur die variablen, exem-
plarspezifischen Eigenschaften (zustand).

• Anwendung:

– Neue Klasse ItemArt enthält String name und String beschreibung.

– Item (Exemplar) behält Zustand zustand und erhält eine 1:1-Assoziation zu ItemArt.

v) Wert jeder Item-Art für einen NPC

• Muster: Association Class (Assoziationsklasse)

• Begründung: Der wert ist ein Attribut der Beziehung zwischen einem NPC (der bewertet) und einer
ItemArt (die bewertet wird), nicht nur Attribut einer einzelnen Klasse.

• Anwendung: Die Assoziation zwischen NPC und ItemArt wird durch die Assoziationsklasse Handelswert
qualifiziert.

– Handelswert enthält das Attribut int wert.

b) Verwaltungsklasse und Entwurfsmuster
• Verwaltungsklasse: Eine Klasse Spielverwaltung wird eingefügt.

• Zuständigkeiten: Die Klasse verwaltet die Erzeugung, das Löschen, Laden und Speichern von Account-
und PlayerCharakter-Objekten.

• Entwurfsmuster: Singleton

• Begründung: Das Singleton-Muster stellt sicher, dass die Spielverwaltung als zentrale Steuereinheit
nur einmal im System existiert, was für globale Verwaltungsaufgaben sinnvoll ist.

c) Assoziation qualifizieren
Die Assoziation zwischen Account und PlayerCharakter wird qualifiziert, um den direkten Zugriff auf Cha-
raktere über ihren Namen zu ermöglichen.

• Assoziation: Account charaktere ∗−−−−−−−−→ PlayerCharakter

• Qualifizierer: String charakterName

• Anwendung:

Account
charaktere [charakterName] : 1−−−−−−−−−−−−−−−−−−−→ PlayerCharakter

Die qualifizierte Assoziation ermöglicht es, dass ein Account einen bestimmten PlayerCharakter über
den charakterName eindeutig identifiziert.

2


