Abgabe Ubungsblatt 7

Ben Zottl 457736 Deni Ismailov 454935 Ahmed Assahub 442562
Dezember 2025

Aufgabe 7.1) Entwurfsmuster

a) Verfeinerungen mit Analysemustern

Die folgenden Verfeinerungen des Analysemodells werden unter Anwendung geeigneter Analysemuster durchge-
fiihrt.

i) Quests: Individuelle Aufgaben oder komplexe Quests

e Muster: Composite (Kompositum)

e Begriindung: Das Composite-Muster erlaubt es, hierarchische Strukturen abzubilden, indem es eine
uniforme Schnittstelle fiir Einzelobjekte (IndividuelleAufgabe) und Containerobjekte (KomplexeQuest)
bereitstellt. Dies ermdglicht die Zusammensetzung von Quests aus Sub-Quests.

e Anwendung: Die Klasse Quest wird zur abstrakten Komponente.

— IndividuelleAufgabe (Blatt): Erbt von Quest, enthdlt Aufgabenbeschreibung.

— KomplexeQuest (Container): Erbt von Quest, besitzt eine Assoziation zu einer Sammlung von Quest-
Komponenten (Sub-Quests).
ii) Abschluss-Status und Fortschritt der Quest pro Player-Charakter

e Muster: Association Class (Assoziationsklasse)

e Begriindung: Die Informationen (Fortschritt, Status, Zeitpunkte) gehoren nicht nur zur Quest oder
zum PlayerCharakter, sondern zur spezifischen Beziehung zwischen beiden. Eine Assoziationsklasse
ermoglicht die Kapselung dieser relationalen Attribute.

e Anwendung: Die Assoziation zwischen PlayerCharakter und Quest wird durch die Assoziationsklasse
QuestFortschritt qualifiziert.

— QuestFortschritt enthilt Attribute wie String status, int fortschritt,Date startZeitpunkt,
Date endZeitpunkt.
iii) NPC als Verkiufer, Gegner oder keines
e Muster: Role-Muster (abgeleitet vom Strategy-Muster)

e Begriindung: Da die Rollen optional sind, wechselbar und nicht exklusiv, ist das Role-Muster ideal, um
die flexiblen Verhaltensweisen (Verk&ufer, Gegner) von der Hauptklasse NPC zu entkoppeln.

¢ Anwendung:

— Interface/Abstrakte Klasse NPCRolle wird definiert.
— Konkrete Klassen VerkduferRolle und GegnerRolle implementieren NPCRolle.

— NPC erhélt eine optionale Assoziation (0..1) zur NPCRolle.



iv) Unterscheidung zwischen Item-Exemplar und Item-Art
e Muster: Type-Object (Typobjekt)

e Begriindung: Gemeinsame, statische Eigenschaften (name, beschreibung) werden in einer separaten
Typklasse (ItemArt) zusammengefasst. Die individuelle Klasse (Item) behélt nur die variablen, exem-
plarspezifischen Eigenschaften (zustand).

¢ Anwendung:

— Neue Klasse ItemArt enthilt String name und String beschreibung.

— Item (Exemplar) behdlt Zustand zustand und erhilt eine 1:1-Assoziation zu ItemArt.

v) Wert jeder Item-Art fiir einen NPC

e Muster: Association Class (Assoziationsklasse)

e Begriindung: Der wert ist ein Attribut der Beziehung zwischen einem NPC (der bewertet) und einer
ItemArt (die bewertet wird), nicht nur Attribut einer einzelnen Klasse.

e Anwendung: Die Assoziation zwischen NPC und ItemArt wird durch die Assoziationsklasse Handelswert
qualifiziert.

— Handelswert enthalt das Attribut int wert.

b) Verwaltungsklasse und Entwurfsmuster

e Verwaltungsklasse: Eine Klasse Spielverwaltung wird eingefiigt.

e Zustindigkeiten: Die Klasse verwaltet die Erzeugung, das Loschen, Laden und Speichern von Account-
und PlayerCharakter-Objekten.

e Entwurfsmuster: Singleton
e Begriindung: Das Singleton-Muster stellt sicher, dass die Spielverwaltung als zentrale Steuereinheit
nur einmal im System existiert, was fiir globale Verwaltungsaufgaben sinnvoll ist.

c) Assoziation qualifizieren

Die Assoziation zwischen Account und PlayerCharakter wird qualifiziert, um den direkten Zugriff auf Cha-
raktere iiber ihren Namen zu ermoglichen.

<. harakt
e Assoziation: Account %%, PlayerCharakter

e Qualifizierer: String charakterName

e Anwendung:
charaktere [charakterName] : 1

Account PlayerCharakter

Die qualifizierte Assoziation ermdglicht es, dass ein Account einen bestimmten PlayerCharakter iiber
den charakterName eindeutig identifiziert.



